CD40 activation mediates p53-dependent cell cycle regulation in human multiple myeloma cell lines.

نویسندگان

  • G Teoh
  • Y T Tai
  • M Urashima
  • S Shirahama
  • M Matsuzaki
  • D Chauhan
  • S P Treon
  • N Raje
  • T Hideshima
  • Y Shima
  • K C Anderson
چکیده

It has been reported that the activation of multiple myeloma (MM) cells by CD40 induces proliferation, growth arrest, and apoptosis. To determine whether the biologic sequelae of CD40 activation in MM cells depends on p53 function, we identified temperature-sensitive p53 mutations in the RPMI 8226 (tsp53E285K) and the HS Sultan (tsp53Y163H) MM cell lines. These cells were then used as a model system of inducible wtp53-like function because wild-type-like p53 is induced at permissive (30 degrees C) but not at restrictive (37 degrees C) temperatures. Using p21-luciferase reporter assays, we confirmed that CD40 induces p53 transactivation in RPMI 8226 and HS Sultan cells cultured under permissive, but not restrictive, conditions. Furthermore, CD40 activation of these MM cells under permissive, but not restrictive, temperatures increased the expression of p53 and p21 mRNA and protein. Importantly, CD40 activation induced the proliferation of RPMI 8226 and HS Sultan cells at restrictive temperatures and growth arrest and increased subG1 phase cells at permissive temperatures. These data confirmed that CD40 activation might have distinct biologic sequelae in MM cells, depending on their p53 status.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells.

It was previously demonstrated that p53 status in human multiple myeloma (MM) cells regulates distinct cell cycle responses to CD40 activation. In this study, the production of vascular endothelial growth factor (VEGF) and migration in MM cells triggered by CD40 activation was examined, and the influence of p53 status in regulating this process was determined. Two human MM cell lines that expre...

متن کامل

Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α

Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...

متن کامل

Arsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL.

Arsenic trioxide (ATO) has been shown to induce differentiation and apoptosis in acute promyelocytic leukemia (APL) cells concomitant with down-regulation of the PML-RARalpha fusion protein, a product of the t(15:17) translocation characteristic of APL leukemic cells. However, ATO is also a potent inducer of apoptosis in a number of other cancer cells lacking the t(15:17) translocation. The exa...

متن کامل

CD93 is Selectively Expressed on Human Myeloma Cells but Not on B Lymphocytes

Background: CD93 has originally been known as a C1q receptor, and many studies have demonstrated that CD93 is expressed on hematopoietic stem cells, B cell progenitors, myeloid and monocytic cells. Moreover, CD93 is shown to be expressed on long-lived plasma cells, and CD93 deficient-mice display an impairment in plasma cell development. Objective: To investiga...

متن کامل

Inhibition of Cyclin-dependent Kinase (CDK) Decreased Survival of NB4 Leukemic Cells: Proposing a p53-Independent Sensitivity of Leukemic Cells to Multi-CDKs Inhibitor AT7519

An unbounded number of events exist beneath the intricacy of each particular hematologic malignancy, prompting the tumor cells into an unrestrained proliferation and invasion. Aberrant expression of cyclin-dependent kinases (CDKs) is one of these events which disrupts regulation of cell cycle and subsequently, results in cancer progression. In this study, we surveyed the repressive impact of mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 95 3  شماره 

صفحات  -

تاریخ انتشار 2000